VACCINE INJURY:
Assessment, Treatment and Prevention
DISCLAIMER: THIS PRESENTATION DOES NOT PROVIDE MEDICAL ADVICE

The information, including but not limited to, text, graphics, images and other material contained in this presentation is for informational purposes only. The purpose of this conference is to provide an understanding and knowledge of various health topics. It is not intended to be a substitute for professional medical advice, diagnosis or treatment. Always seek the advice of your physician or other qualified health care provider with any questions you may have regarding a medical condition or treatment and before undertaking a new health care regimen, and never disregard professional medical advice or delay in seeking it because of something you have encountered in this presentation.

SHEI does not recommend or endorse any specific tests, physicians, products, procedures, opinions or other information that may be mentioned in this presentation. Reliance on any information appearing in this presentation is solely at your own risk.
Unless We Can Turn Off the Disease Engine

KEY CONTRIBUTORS TO CHRONIC DISEASE: THE DISEASE ENGINE

Sub Clinical (damage from a distance) → Disease
- Immune deficiency
- Inflammation
- Mutation
- Disease development

Microbial Infection (the switch)

Oxidative Stress (ROS/RNS)

Inflammation (NFkB & COX2)

Trigger
Hit and run
Activation
Chronic Inflammation
Immune Deficiency
Cytokine Storm
Inflammatory Insults on Genetic and Epigenetic Susceptible Individuals Results in Chronic Disease
GENETIC SUSCEPTIBILITIES

Genetics are extremely important in Vaccine Injury

Multifactorial: subsets of genes

- Diagnostics: Multiplex technologies genetic, epigenetic and protein signatures of Disease

 Ex: Courtagen, Oncotype DX

Channelopathies: SCN4A..SCN1A

Immunity Genes: RNASEL

Methylation: MTHFR, MeCP2, IGF-1

Detox: CYP p450
Association of methylenetetrahydrofolate reductase \textit{(MTHFR)} gene C677T polymorphism with autism: evidence of genetic susceptibility
New Technologies: Comprehensive Sequence Analysis of Nuclear mitochondrial genes

- NGS for variants in the nuclear mitochondrial exome that contribute to neurological disorders whose symptoms resemble mitochondrial disease.

Case Report Results:

- Abnormal autosomal dominant Variant was found in SCN4A gene that is likely a pathological mutation

- Pathological mutations found in two other patients also with multiple functional conditions (ME/CFS)

Incidental finding:

This patient has three variants in RNASEL. Mutations in this gene have been associated with predisposition to prostate cancer and this gene is a candidate for the hereditary prostate cancer 1 (HPC1) allele. One of these variants, p.E265*, has been reported in the literature in 4 brothers with prostate cancer.

Drugs targeting channelopathies (Diamox) and key mitochondrial targets mTOR (Metformin, rapamycin)
Key To Diagnosis: Familial History

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Auto-Immune Diseases</th>
<th>CNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate*</td>
<td>Lupus</td>
<td>ME/CFS*</td>
</tr>
<tr>
<td>Breast*</td>
<td>Crohn’s*</td>
<td>Gulf War Syndrome*</td>
</tr>
<tr>
<td>Non Hodgkin’s Lymphoma*</td>
<td>Hashimoto’s Thyroiditis*</td>
<td>Autism*</td>
</tr>
<tr>
<td>Chronic Lymphocytic</td>
<td>Polymyositis</td>
<td>MS*</td>
</tr>
<tr>
<td>Leukemia*</td>
<td>Sjogren’s syndrome</td>
<td>Parkinson’s*</td>
</tr>
<tr>
<td>Mantle Cell Lymphoma*</td>
<td>Bechet’s Disease*</td>
<td>ALS*</td>
</tr>
<tr>
<td>Hairy Cell Leukemia</td>
<td>Primary Biliary Cirrhosis*</td>
<td></td>
</tr>
<tr>
<td>Bladder*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovarian*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* RT Activity, RV sequences or proteins, antibodies to RV proteins

Diseases associated with vaccine injury in families
Earliest Symptoms reflect immune damage

- SKIN: Rash
- Gastrointestinal tract: GERD, leaky Gut
- Hematopoietic (Blood) Cells: Myelodysplasia
- Brain: Blood Brain Barrier lymphatics: edema
Recognition = Recovery
Mg2+ Transporter deficiency results in defective T and NK cell Function
Only certain antibiotic promote fungal overgrowth in the gut, suggesting
Specific commensal bacteria have the ability to prevent colonization of Candida

Treatment: Celebrex
Aberrant T cell subsets: Drivers of Chronic Inflammatory Disease

- GERD/Gastritis
- Eosinophilic Esophagitis

TH2

IL-4, IL-5, IL-13
IL-25, IL-31, IL-33

Helminths,
Allergic
inflammation
IgE,
Chronic
eosinophilic
inflammation
Common Variable Immune Deficiency (CVID)

- Infection/inflammation of GI Tract
- Lymphadenopathy
- Splenomegaly
- Multi-organ Granuloma accumulation
- Idiopathic Thrombocytopenia (ITP)
- Autoimmune hemolytic Anemia

Mutations in at least ten genes including TNFRSF13B
- Key to survival and proliferation of B cells
TH9 Cells: Regulators Chronic Allergic Inflammation.

- mast cell disease
- Asthma
- Protection against nematode infections

Genetic Susceptibility?: Erlers Danlos Syndrome (EDS)
Autoimmune Disease Development & Molecular Mimicry

- Asthma
- MS
- RA
- Psoriasis
- Complement mediated Hypersensitivity
TH22 Key to Human Skin Cell Disease

- Atopic Dermatitis
- Psoriasis
- Melanoma
IGF-1: A Biomarker of Human Aging and the Development of Chronic Disease regulated by DNA Methylation
Danger of Inoculation During key Developmental Phases

Most Vulnerable: pregnant women, infants, teens, elderly, male vs female
NEW Inflammatory Syndrome(s): Age Inappropriate Vaccination

Clin Rheumatol
DOI 10.1007/s10067-015-2969-z

REVIEW ARTICLE

Hypothesis: Human papillomavirus vaccination syndrome—small fiber neuropathy and dysautonomia could be its underlying pathogenesis

Manuel Martínez-Lavín

Received: 8 April 2015 / Revised: 5 May 2015 / Accepted: 5 May 2015
Disruption of the blood-brain barrier triggers a cascade of events that results in autoimmunity and brain damage characteristic of multiple sclerosis.

- A single drop of blood in the brain is sufficient to activate an autoimmune response akin to multiple sclerosis (MS).
- Introduction of blood in the healthy brain is sufficient to cause peripheral immune cells to enter the brain.
- Which then go on to cause brain damage.

So what happens when a healthy brain is injected with?
Current Vaccine schedules compound damage in vulnerable populations with Chronic Disease and Cancer (20-30 Million Americans)

“Activation of the cellular immune system is important in the pathogenesis of HIV disease, and that fact has given rise to concerns that the activation of the immune system through vaccinations might accelerate the progression of HIV disease . . . If feasible, it is preferable to have patients on antiretroviral therapy (ART) prior to receipt of vaccination.” – Accessed May 3, 2013.

UCSF Pediatric AIDS Website on HIV and Immunization

- Sterile environments result lack of educated immune systems
- Vaccination schedules result in anergic immune systems that is the inability to mount an immune response to the antigen
- Toxic components exacerbate immune dysfunction resulting in aberrant expression of host endogenous RVs
- Reappearance of disease is BECAUSE of inappropriate vaccinations and the toxic components contained in them
Treating Neuroimmune Damage Orchestrated by Microglia

- Prevention: No inoculations before 3 years of age
- MicroRNA, RT inhibitors
- Immune modulators: Baicalin, neuroprotect, GcMAF,
- TLR agonists/antagonists: Imiquimod
- DNA methylation inhibitors: decitibine
Dedicated to Dr. Candace Pert

Dr. Pert was an advocate for women in science, once remarking that “it’s very difficult to climb up the bureaucratic ladder if you’re a female.” Dr. Pert seemed to embrace her reputation as an independent-minded scientist. She kept in her office a sign that read:

“If you are getting run out of town, get in front of the crowd and make it look like a parade.”

MAR Consulting Inc., Carlsbad CA

www.marconsultinginc.com

Here we are not afraid to follow the truth wherever it may lead,
Nor tolerate error so long as freedom is left to combat it

Thomas Jefferson